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1. Introduction 

Alcohol is one of the leading causes of traffic fatalities. According to the National Highway 
Traffic Safety Administration (NHTSA), drunk driving kills 106 people a day in the U.S. - 
about one death every 13 minutes. That means more than 38,824 people will be killed by drunk 
drivers in 2020, accounting for about one-third of all traffic-related deaths. Drunk driving 
causes more than $44 billion in deaths and damages each year. 

 
Of the 43,464 crashes that occurred in residential block groups of Philadelphia between 

2008 and 2012, the percentage of fatal injuries caused by drunk driving was 7.6 percent, 
compared to 2.9 percent for those who had not been drinking. This again illustrates the 
seriousness of DUI.  

 
In this study, we will use the statistical programming language R to build a logistic model 

which is to identify predictors of accidents related to drunk driving. Predictors studied included 
following variables: 

 
FATAL_OR_M: Crash resulted in fatality or major injury (1 = Yes, 0 = No) 
OVERTURNED: Crash involved an overturned vehicle (1 = Yes, 0 = No) 
CELL_PHONE: Driver was using cell phone (1= Yes, 0 = No) 
SPEEDING: Crash involved speeding car (1 = Yes, 0 = No) 
AGGRESSIVE: Crash involved aggressive driving (1 = Yes, 0 = No) 
DRIVER1617: Crash involved at least one driver who was 16 or 17 years old (1 = Yes, 0 = 

No) 
DRIVER65PLUS: Crash involved at least one driver who was at least 65 years old (1 = Yes, 

0 = No) 
AREAKEY: ID of the Census Block Group where the crash took place 
PCTBACHMOR: % of individuals 25 years of age or older who have at least a bachelor’s 

degree in the Census Block Group where the crash took place 
MEDHHINC: Median household income in the Census Block Group where the crash took 

place. 
 
Some predictors have a more correlated relationship with the dependent variable, such as 

fatal accidents, speeding and aggressive driving in which DUI rates tend to be higher because 
alcohol makes drivers more likely to lose control of their minds and make dangerous moves. 
In the article, we will discuss these issues in detail. 

 
2. Methods 

a) Problems with Using OLS Regression for Binary DV. 
For OLS, the model can be interpreted as the following formula:  



𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜀𝜀 
The relationship between the variables in this formula can be explained by the value 

of the coefficient, which means that when the predictor variable x changes by one unit, 
the dependent variable y changes by β1. However, when the dependent variable is binary, 
the change of y is only binary, which is either 1 or 0. Therefore, it is meaningless to explain 
the change of y with OLS, because the dependent variable will not increase or decrease 
the value of β1 due to the change of the prediction variable. Thus, the OLS prediction 
model describing binary variables is not valid. 

 
b) Logistic Regression  

In logistic regression, it is no longer possible to get the regression result by predicting 
the value of Y, so we can only get the prediction result by other methods. Instead of 
directly predicted Y value, let's predict the probability of Y occurring, the P(Y=1|X=x). 
Sometimes our regression models get results in the range of -∞ and +∞, for example, the 
predicted positive estimate can be 1.3, negative estimate can be -0.2, but for probability 
values should be 0 to 1, so these calculations have no real value. We need a transformation 
process to turn the linear regression result into a real and usable probability number using 
a function that converts the value between -∞ and +∞ to the corresponding value between 
0 and 1. The closer the Y result in the linear regression model is to +∞, the closer the 
probability of return is to 1; The closer the Y result in the linear regression model is to -
∞, the closer the probability of return is to 0. Here's a mathematical diagram: 

 

The concept of odds is included in the conversion function. The concept of odds should 
be understood before understanding the conversion function. Compare odds with 
probability: 

• Probability may be calculated as # 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑
# 𝑝𝑝𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑

 

• Odds may be calculated as # 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑
# 𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑

 

For example, set the probability as the probability that there is a hospital in a certain 
zip code, that is, Y=1 (hospital in zip code), which is expressed by the mathematical 
formula: 

𝑃𝑃(𝑌𝑌 = 1) =
# 𝑧𝑧𝑧𝑧𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤ℎ𝑐𝑐𝑒𝑒𝑐𝑐 𝑡𝑡ℎ𝑐𝑐𝑒𝑒𝑐𝑐′𝑐𝑐 𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑧𝑧𝑧𝑧𝑡𝑡𝑎𝑎𝑜𝑜

# 𝑧𝑧𝑧𝑧𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

According to the above definition of odds and probability, odds can be written as: 

𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐(𝑌𝑌 = 1) = # 𝑧𝑧𝑑𝑑𝑝𝑝 𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤ℎ𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜ℎ𝑑𝑑𝑑𝑑𝑑𝑑′𝑑𝑑 𝑑𝑑 ℎ𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑
# 𝑧𝑧𝑑𝑑𝑝𝑝 𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤ℎ𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜ℎ𝑑𝑑𝑑𝑑𝑑𝑑′𝑑𝑑 𝑢𝑢𝑜𝑜 ℎ𝑜𝑜𝑑𝑑𝑝𝑝𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑

=



# 𝑧𝑧𝑧𝑧𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤ℎ𝑐𝑐𝑒𝑒𝑐𝑐 𝑡𝑡ℎ𝑐𝑐𝑒𝑒𝑐𝑐′𝑐𝑐 𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑧𝑧𝑧𝑧𝑡𝑡𝑎𝑎𝑜𝑜
# 𝑧𝑧𝑧𝑧𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

# 𝑧𝑧𝑧𝑧𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤ℎ𝑐𝑐𝑒𝑒𝑐𝑐 𝑡𝑡ℎ𝑐𝑐𝑒𝑒𝑐𝑐′𝑐𝑐 𝑛𝑛𝑐𝑐 ℎ𝑐𝑐𝑐𝑐𝑧𝑧𝑧𝑧𝑡𝑡𝑎𝑎𝑜𝑜
# 𝑧𝑧𝑧𝑧𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑃𝑃(𝑌𝑌=1)
𝑃𝑃(𝑌𝑌≠1)

= 𝑃𝑃(𝑌𝑌=1)
𝑃𝑃(𝑌𝑌=0)

= 𝑃𝑃(𝑌𝑌=1)
1−𝑃𝑃(𝑌𝑌=1)

= 𝑝𝑝
1−𝑝𝑝

. 

 
One type of conversion function is the logit function. A logit model with one predictor is: 

ln �
𝑧𝑧

1 − 𝑧𝑧
� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜀𝜀 

In the interpretation of odds, we can know that 𝑧𝑧 = 𝑃𝑃(𝑌𝑌 = 1) in the above formula is 

probability. And the quantity on the left 𝑝𝑝
1−𝑝𝑝

  is called the odds, then to logarithm 

calculation of odds, ln � 𝑝𝑝
1−𝑝𝑝

� is called the log odds, or logit. 

Another conversion function is the logistic function, which is also called the Inverse-
Logit Function. The mathematical formula is:  

𝑧𝑧 =
𝑐𝑐𝛽𝛽0+𝛽𝛽1𝑥𝑥1

1 + 𝑐𝑐𝛽𝛽0+𝛽𝛽1𝑥𝑥1
=

1
1 + 𝑐𝑐−𝛽𝛽0−𝛽𝛽1𝑥𝑥1

 

There is only one prediction variable in this mathematical formula. Later, I will list 
the multivariable conversion function with the variables in the prediction process, so as 
to explain the method of this assignment more intuitively. Logistic function can function 
in �̂�𝛽0 + �̂�𝛽1𝑥𝑥1 value to measure the size of the probability, when �̂�𝛽0 + �̂�𝛽1𝑥𝑥1 has a value 
of 0, the probability is 0.5, when �̂�𝛽0 + �̂�𝛽1𝑥𝑥1 is larger, the probability is more close to 1, 
on the contrary, When the �̂�𝛽0 + �̂�𝛽1𝑥𝑥1 is smaller, the probability is close to zero.  

The two formulas can be graphed as follows:  

 

The diagram on the left is the logit function, and the diagram on the right is the Inverse-
Logit Function.  

There is also the concept of odds ratios, which are the exponentiations of prediction 
variables corresponding to forecast intercepts, and they range from 0 to infinity, meaning 
they cannot be negative. Odds <1 indicates that there is negative correlation between 
predictor x and dependent variable, and Odds ratios = 1 indicates that there is no 
relationship between predictor x and dependent variable, odds > 1 indicates that there is 
a positive correlation between the predicted factor x and the dependent variable. 

The next step is to consider multiple logistic regression, where the formula will bring 
in multiple predictors and the variable names from this assignment. The case with multiple 
predictors is not very different from the case with only one predictor. Here are the two 
formulas:  



 
ln � 𝑝𝑝

1−𝑝𝑝
� = 𝛽𝛽0 + 𝛽𝛽1(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑂𝑂𝑂𝑂_𝑀𝑀) + 𝛽𝛽2(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) + 𝛽𝛽3(CELL_PHONE) + 𝛽𝛽4(SPEEDING) +

𝛽𝛽5(𝐹𝐹𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂) + 𝛽𝛽6(𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂1617) + 𝛽𝛽7(𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂65𝑃𝑃𝐹𝐹𝑂𝑂𝐴𝐴) + 𝛽𝛽8(𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑀𝑀𝑂𝑂𝑂𝑂) + 𝛽𝛽9(𝑀𝑀𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃) + 𝜀𝜀  

𝑧𝑧 =
1

1 + 𝑐𝑐−𝛽𝛽0−𝛽𝛽1(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑂𝑂𝑂𝑂_𝑀𝑀)+𝛽𝛽2(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)+𝛽𝛽3(𝑃𝑃𝑂𝑂𝐹𝐹𝐹𝐹_𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂)+𝛽𝛽4(𝐴𝐴𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝐴𝐴)+𝛽𝛽5(𝐹𝐹𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂)+𝛽𝛽6(𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂1617)+𝛽𝛽7(𝑂𝑂𝑂𝑂𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂65𝑃𝑃𝐹𝐹𝑂𝑂𝐴𝐴)+𝛽𝛽8(𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑀𝑀𝑂𝑂𝑂𝑂)+𝛽𝛽9(𝑀𝑀𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃) 

 
In the formula with multivariate variables, we also need to follow the same rule as 

OLS regression to ensure that there is no multicollinearity. When we interpret and study 
one variable, we need to keep other predictive variables unchanged. 

 
c) The Hypothesis Tested for Each Predictor 

In general, we will conduct two hypothesis tests for each prediction variable 𝑥𝑥𝑑𝑑, which 
are: 

𝑃𝑃0:𝛽𝛽𝑑𝑑 = 0 (𝑂𝑂𝑂𝑂𝑑𝑑 = 1) 
𝑃𝑃𝑑𝑑:𝛽𝛽𝑑𝑑 ≠ 0 (𝑂𝑂𝑂𝑂𝑑𝑑 ≠ 1) 

The former is when OR is equal to 1, that is, there is no correlation between the 
predictor and the dependent variable. This hypothesis test is called null hypotheses. The 
latter is when OR is not equal to 1, in which case the prediction variable is related to the 
dependent variable, called alternative hypotheses. 

We can know the mean of the �̂�𝛽𝑑𝑑 model results E is equal to zero, therefore, there are 
𝛽𝛽�𝑧𝑧−𝐸𝐸(𝛽𝛽�𝑧𝑧)

𝜎𝜎𝛽𝛽�𝑧𝑧
= 𝛽𝛽�𝑧𝑧−0

𝜎𝜎𝛽𝛽�𝑧𝑧
= 𝛽𝛽�𝑧𝑧

𝜎𝜎𝛽𝛽�𝑧𝑧
, And 𝛽𝛽�𝑧𝑧

𝜎𝜎𝛽𝛽�𝑧𝑧
conforms to the standard normal distribution, according to 

the standard definition of score, can get:  
�̂�𝛽𝑑𝑑
𝜎𝜎𝛽𝛽�𝑧𝑧

= 𝑧𝑧 

𝛽𝛽�𝑧𝑧
𝜎𝜎𝛽𝛽�𝑧𝑧

values in the context of logistic regression is sometimes referred to as the wald 

statistic, this suggests that the wald statistic is accord with a standard normal distribution. 
P-value can be obtained using the standard normal table of z, which is used to evaluate 
the contribution value of each predictor variable to the regression results of the dependent 
variable. 

 
 

d) The Quality of Model Fit. 
We know that in OLS regression, the value of R-squared can be used as the basis for 

the evaluation of predictive variables, but R-squared cannot be used to explain the value 
percentage of variables in the model in logistics regression. When conducting logistics 
regression experiment with tools, R-squared value will not be generated as the evaluation 
index. In general, we use the stand or fall of residual error to evaluate the results of 
prediction, residual is defined as the 𝜀𝜀 = 𝑦𝑦𝑑𝑑 − 𝑦𝑦�𝑑𝑑 , is to use observed value minus the 
predicted value, the judgment method is also suitable for logistics regression evaluation 
period. We also require residual 𝜀𝜀 = 𝑦𝑦𝑑𝑑 − 𝑦𝑦�𝑑𝑑, only here 𝑦𝑦�𝑑𝑑 is our prediction probability, 
and more specifically the probability is the result of P (y = 1). If the true value of Y is 1, 
the probability of predicting P(Y=1) will be higher; if the true value of Y is 0, the 



probability of predicting P(Y=1) will be lower.  
We used an index called AIC in a geographically weighted regression, which is used 

to measure model performance and help compare different regression models. The smaller 
AIC is, the better the model can fit the observed data. However, when the amount of data 
is small, AIC is more likely to select models with too many parameters, and small sample 
size needs to be corrected, which is called AICc. Neither AIC nor AICc are absolute 
measures of goodness of fit, but as long as they apply to the same dependent variable, 
they are useful for comparing models with different explanatory variables. 

In determining whether or not we need a threshold to divide all the probability values 
as the correct result, when the probability of the income is greater than this threshold we 
can think that the prediction is credible, and when the probability of the income is less 
than this threshold, we think that the prediction is not acceptable. So we need to find the 
most appropriate threshold, and we call it the alpha value. This indicator requires different 
values as the model and the prediction variable need to be chosen, because the distribution 
of the probability is divided, and in general, the histogram of the predicted value can be 
observed to determine the object. 

There are some definitions associated with predictive values and observations in 
logical regression. Sensitivity (also called the true positive rate) measures the proportion 
of actual positives which are correctly identified as such (e.g., the percentage of sick 
people who are correctly identified as having the condition), and is complementary to the 
false negative rate. 

Specificity (also called the true negative rate) measures the proportion of negatives 
which are correctly identified as such (e.g., the percentage of healthy people who are 
correctly identified as not having the condition), and is complementary to the false 
positive rate. 

The ROC curve is a method of visualization true positive rate(sensitivity) and false 
positive rate(specificity). Using the ROC curve to observe the prediction of the model, 
the relationship between sensitivity and specificity is presented by curved linear form. 
 

 
It is feasible to use the ROC curve to determine the best cut-off value, and there are 

many different ways to determine the final judgment value based on the ROC curve. One 
is Youden Index, which uses the judgment value at the maximum sum of sensitivity and 
specificity as the threshold value. One is the critical value of the minimum distance 



between the ROC curve and the upper left corner of the graph, that is, the point with 
specificity = 1 and sensitivity = 1. It's really just another way to maximize specificity and 
sensitivity. In this experiment, we chose the second method.  

The Area Under ROC Curve is also meaningful, which is called the AUC (Area Under 
Curve). AUC is an important index used by models to measure the accuracy of models. 
The higher AUC value indicates the higher sensitivity and specificity of our final results, 
which is in line with our expectations. The AUC has a value between 0.5 (the area of the 
slope below 45 degrees) and 1 (the area of the entire image box). Generally speaking, 
some rough values can basically determine the quality of the model:  

• 0.9-1 = excellent 
• 0.8-0.9 = good 
• 0.7-0.8 = fair 
• 0.6-0.7 = poor 
• 0.5-0.6 = fail 

In general, the results of the model are acceptable when the AUC is greater than 0.7. 
 

e) Assumptions of Logistic Regression. 
Compared to OLS regression, logistic regression has some assumptions that are the 

same as OLS, but some are not used. In logistic regression, the dependent variable must 
be binary but doesn’t require a linear relationship between the dependent variable and 
each predictive variable as OLS. The observed values of logistic regression and OLS were 
independent. For collinearity between variables, OLS requires no multicollinearity, while 
logistic regression is not so strict, requiring no serious multicollinearity. The residual of 
logistic regression does not require normality, but the residual of OLS does; Logistic 
regression does not assume Homoscedasticity, whereas OLS does. Logistic regression has 
a larger data sample than OLS, because logistic regression uses the maximum likelihood 
estimation method instead of the least square method, and each prediction variable needs 
at least 50 observed values, while OLS is usually more than 10 can be carried out. 
 

f) Exploratory Analyses 
Unlike the OLS regression model we conducted before. Due to the presence of 

categorical data in the logistic regression model, we use the Chi-Square (χ2)  test to 
determine whether the distribution of one categorical variable varies with respect to the 
values of another categorical variable. If we were to look are a cross-tabulation of the 
variables DRINKING_D and SPEEDING, the null and alternative hypotheses for the 
(χ2) test would be as follows: 

𝑃𝑃0: the proportion of speeding that involve drunk drivers is the same as the proportion 
of speeding that don’t involve drunk drivers, 

𝑣𝑣𝑐𝑐. 
𝑃𝑃𝑑𝑑:  the proportion of speeding that involve drunk drivers is different than the 

proportion of speeding that don’t involve drunk drivers. 
 
A high value of the χ2 statistic, and a p-value lower than 0.05 suggest that there’s 

evidence to reject the null hypothesis in favor of the alternative, and that there’s a 



significant association between drunk driving and speeding. 
 
When identify the correlation between a continuous variable and two independent 

groups, we can employ a test that’s called the independent samples t-test. For example, 
we can see whether the average PCTBACHMOR values are statistically significantly 
different for crashes that involve drunk drivers and crashes that don’t. The null and 
alternative hypotheses for the independent samples t-test would be as follows: 

𝑃𝑃0: average values of the variable PCTBACHMOR (or MEDHHINC) are the same 
for crashes that involve drunk drivers and crashes that don’t. 

𝑣𝑣𝑐𝑐. 
𝑃𝑃𝑑𝑑: average values of the variable PCTBACHMOR (or MEDHHINC) are different 

for crashes that involve drunk drivers and crashes that don’t. 
 
A high value of the t-statistic, and a p-value lower than 0.05 suggest that there’s 

evidence to reject the null hypothesis in favor of the alternative. 
3. Results 

a) Results of the Exploratory Analyses. 
First of all, through the tabulation of the dependent variable, we can see that there was 

a total of 2,485 accidents involving alcohol, accounting for 5.73% of the total valid data. 
Specific to the type of accident collision, in the Hit fixed object category, the highest 
percentage of accidents involving alcohol, accounting for 22.7%. In the Head-on; 
Sideswipe (same dir. & Opposite die.); Hit fixed object and Hit pedestrian categories, the 
percentage of accidents involving alcohol was more than double the percentage of 
accidents not involving alcohol. 

 

 



 
 

Secondly, Through the cross-tabulation of the dependent variable with each of the 
binary predictors. We can learn the following information: 

For Predictor FATAL_OR_M, 7.60% of accidents involving drunk drivers and 2.90% 
of accidents NOT involving drunk drivers. The p-value of the Chi-Square (χ2)  test 
<0.001 which means that there’s a significant association between drunk driving and crash 
fatalities. 

For Predictor OVERTURNED, 4.40% of accidents involving drunk drivers and 1.50% 
of accidents NOT involving drunk drivers. The p-value of the Chi-Square (χ2)  test 
<0.001 which means that there’s a significant association between drunk driving and crash 
fatalities. 

For Predictor CELL_PHONE, 1.10% of accidents involving drunk drivers and 1.00% 
of accidents NOT involving drunk drivers. The p-value of the Chi-Square (χ2) test is 
0.687>0.05, which means that there’s NOT a significant association between drunk 
driving and crash fatalities. 



For Predictor SPEEDING, 10.50% of accidents involving drunk drivers and 3.10% of 
accidents NOT involving drunk drivers. The p-value of the Chi-Square (χ2) test <0.001 
which means that there’s a significant association between drunk driving and crash 
fatalities. 

For Predictor AGGRESSIVE, 35.90% of accidents involving drunk drivers and 45.30% 
of accidents NOT involving drunk drivers. The p-value of the Chi-Square (χ2)  test 
<0.001 which means that there’s a significant association between drunk driving and crash 
fatalities. 

For Predictor DRIVER1617, 0.50% of accidents involving drunk drivers and 1.60% 
of accidents NOT involving drunk drivers. The p-value of the Chi-Square (χ2)  test 
<0.001 which means that there’s a significant association between drunk driving and crash 
fatalities. 

For Predictor DRIVER65PLUS, 4.80% of accidents involving drunk drivers and 10.40% 
of accidents NOT involving drunk drivers. The p-value of the Chi-Square (χ2)  test 
<0.001 which means that there’s a significant association between drunk driving and crash 
fatalities. 

 

 
Thirdly, Through the cross-tabulation of the means of the continuous predictor for both 

values of the dependent variable. We can learn the following information: 
For Predictor PCTBACHMOR: The average PCTBACHMOR values is 16.61 for 

involving drunk drivers and 16.57 for NOT involving drunk drivers. However, the p-value 
for t-test is 0.9137>0.05, which means there is NOT a significant association between the 
average of values of the variable PCTBACHMOR and drunk driving. 

For Predictor MEDHHINC: The average MEDHHINC values is 31998.75 for 
involving drunk drivers and 31483.05 for NOT involving drunk drivers. However, the p-
value for t-test is 0.16>0.05, which means there is NOT a significant association between 
the average of values of the variable MEDHHINC and drunk driving. 

 

 
 

b) Logistic Regression Assumptions 
The assumptions that the dependent variable is binary and observations are 

independent are met. We have more than 50 observations per predictor which means the 
large samples assumption is also met.  

The test results of pairwise Pearson correlations for all predictors is shown as follows. 



The limitation of using Pearson correlations to measure the associations between binary 
predictors is that the coefficient is hard to interpret. It’s unreasonable to say that with one 
unit change of a binary predictor is associated with more or less than one unit change of 
another binary predictor. As shown in the table below, there is no correlation larger than 
0.9 or less than -0.9, which means the assumption of no multicollinearity is also met. 

 
 

c) Logistic Regression Results. 
Below is the result of the logistic regression with all predictors.  
The coefficient of FATAL_OR_M is 8.140×10-01 and the predictor is significant, 

indicating that as the variable goes up 1 unit (from 0=No to 1=Yes), the odds of the driver 
was drinking are about 𝑐𝑐8.140×10−01  = 2.2569 the odds of the driver was not drinking. 
The odds ratio is with 95% confidence interval. 

The coefficient of OVERTURNED is 9.289×10-01 and the predictor is significant, 
indicating that as the variable goes up 1 unit (from 0=No to 1=Yes), the odds of the driver 
was drinking are about 𝑐𝑐9.289×10−01  = 2.5318 the odds of the driver was not drinking. 
The odds ratio is with 95% confidence interval. 

The coefficient of CELL_PHONE is 2.955×10-02 while the predictor is not significant, 
indicating that we fail to reject the 𝑃𝑃0: no correlation between predictor and dependent 
variable from 𝑃𝑃𝑑𝑑: as the variable goes up 1 unit (from 0=No to 1=Yes), the odds of the 
driver was drinking are about 𝑐𝑐  2.955×10−02  = 1.0300 the odds of the driver was not 
drinking. The odds ratio is with 95% confidence interval. 

The coefficient of SPEEDING is 1.539×1000 and the predictor is significant, indicating 
that as the variable goes up 1 unit (from 0=No to 1=Yes), the odds of the driver was 
drinking are about 𝑐𝑐  1.539×1000  = 4.6598 the odds of the driver was not drinking. The 
odds ratio is with 95% confidence interval. 

The coefficient of AGGRESSIVE is -5.969×10-01 and the predictor is significant, 
indicating that as the variable goes up 1 unit (from 0=No to 1=Yes), the odds of the driver 
was drinking are about 𝑐𝑐−5.969×10−01  = 0.5505 the odds of the driver was not drinking. 
The odds ratio is with 95% confidence interval. 

The coefficient of DRIVER1617 is -1.280×1000 and the predictor is significant, 
indicating that as the variable goes up 1 unit (from 0=No to 1=Yes), the odds of the driver 
was drinking are about 𝑐𝑐  −1.280×1000  = 0.2780 the odds of the driver was not drinking. 
The odds ratio is with 95% confidence interval. 

The coefficient of DEIVE65PLUS is -7.747×10-01 and the predictor is significant, 
indicating that as the variable goes up 1 unit (from 0=No to 1=Yes), the odds of the driver 
was drinking are about 𝑐𝑐  −7.747×10−01  = 0.4609 the odds of the driver was not drinking. 
The odds ratio is with 95% confidence interval. 

The coefficient of PCTBACHMOR is -3.706×10-04 while the predictor is not 
significant, indicating that we fail to reject the 𝑃𝑃0: no correlation between predictor and 
dependent variable from 𝑃𝑃𝑑𝑑 : the odds ratio 𝑐𝑐−3.706×10−04 = 0.9996  is the extent to 



which the odds of Y=1 (drinking driver) change as the percent of individuals with at least 
Bachelor’s degrees increases by 1 unit. The odds ratio is with 95% confidence interval.  

The coefficient of MEDHHINC is -2.804×10-06 and the predictor is significant, 
indicating that the odds ratio 𝑐𝑐−2.804×10−06  = 1.0000 is the extent to which the odds of 
Y=1 (drinking driver) change as the median household income increases by 1 unit. The 
odds ratio is approximately 1 with 95% confidence interval, which means this predictor 
is not related to dependent variable.  

 
Below is the table showing the specificity, sensitivity and misclassification rates for 

the different probability cut-offs. It can be seen that the 0.5 cut-offs yield the lowest 
misclassification rates while the 0.02 cut-offs yield the highest. 



 
Below is the ROC curve for the model. The optimal cut-off rate that was selected by 

minimizing the distance from the upper left corner is 0.064, with 0.66 sensitivity and 0.55 
specificity. Compared to the 0.5 cut-offs above, they are similar but not the same. They 
are different ways of maximizing specificity and sensitivity. 

 
Below shows the area under the ROC Curve calculated in R. The area under ROC 

Curve (AUC) is a measure of prediction accuracy of the model. In our model, the AUC is 
0.6398 indicating that the classifying accuracy is poor. 

 

Below is the result of the logistic regression with binary predictors only. Comparing 



to the results of the first regression, all predictors which are significant in this regression 
are significant in the original one. The only not significant predictor CELL_PHONE is 
also not significant in the original model. 

 
Below is a comparison of the AIC for both models. The AIC for the first model is 
slightly lower than the second one. However, the difference is less than 3, which 
means we can say that the power of two models is pretty much the same. 

 
 

4. Discussion 
In this research, we explored the cross-tabulation between each predictor and the binary 

dependent variable DRINKING_D (whether the crash involves a drinking driver). Then we ran 
two logistic regressions model to examine the relationship between each predictor and the 
dependent variable. One model includes all predictors and the other only includes binary 



predictors. 
According to the result of the regression with all predictors, FATAL_OR_M, 

OVERTURNED, SPEEDING, AGGRESSIVE, DRIVER1617 and DRIVER65PLUS are 
strong predictors of crashes that involve drunk driving. CELL_PHONE, PCTBACHMOR and 
MEDHHINC aren’t associated with the dependent variable. 

CELL_PHONE might be a major cause of crashes, but it’s not always related to drunk 
driving, not surprising that it’s not significant. Some of these results are surprising. We 
expected PCTBACHMOR to be significant while it’s not; We expected MEDHHINC to be 
negative related the dependent variable while it’s significantly not associated with drunk 
driving; We expected AGGRESSIVE to be positive related to the dependent variable while it’s 
significantly negative associated with drunk driving. 

Although we have small proportion on one category of the dependent variable, the sample 
size in our case is pretty large so we believe our model does not suffer much from small-sample 
bias. The logistic regression is appropriate here and there is no need to use rare events method. 

There are still some limitations of this analysis as talked above. It’s hard to explain the 
correlation between binary predictors. The low AUC indicates that we may need more 
predictors to make the model more powerful.  


