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1.

Introduction

As an important part of the social economy, housing prices reflect the development of society.

Therefore, forecasts of housing prices can help people better judge the economy.

In the previous report, we predicted median values for all owner-occupied housing units

using OLS regression models based on the proportion of residents in the neighborhood group

with at least a bachelor's degree; the proportion of vacant housing units; the proportion of

detached single-family housing units and the number of households with incomes below the

100% poverty level as predictors.

However, the OLS analysis is often inappropriate when dealing with dataset that have a

spatial component. In this report, we will use spatial lag, spatial error and geographically

weighted regression to see whether these methods perform better than OLS.

Methods

a)

A Description of the Concept of Spatial Autocorrelation

Waldo Tobler proposed the first law of Geography: “Everything is related to everything
else, but near things are more related than distant things.”

Spatial autocorrelation describes the presence of systematic spatial variation in a
variable, and Moran’s I is the most widely used method of testing for spatial

autocorrelation. The value of Moran’s I is calculated as below:

( ?:12;'1:1 wy; (X; _X)(Xj — X))

n n
i=1 Zj:1 Wij

I = —
0 =0
n
B n o1 Xj=1 Wij (Xi_)?)(Xj_X)
Z?=1 Z;'l=1 Wij ?:1(Xi _X)Z

In this formula, X is the mean of the variable X. X; is the variable value at a particular
location i. X; is the variable value at another location j. w;; is a weight indexing

location of i relative to j. n is the number of observations (points or areal units).

The larger positive this value is (close to 1), the stronger positive autocorrelation it
indicates. The larger negative this value is (close to -1), the stronger negative
autocorrelation it indicates. If this value is around 0, it indicates that there is no spatial



b)

autocorrelation (random pattern). Moran’s I is most of times but not always between -1
and 1.

Queen neighbors of a polygon are those intersects it either at a point (common vertex)
or a segment (common edge). In this report, Queen Neighbor Matrix will be used as the
weight matrix to calculate the spatial autocorrelation and run the spatial regressions.

As different spatial weight matrices have their own limitations and fit for different
situation, statisticians usually try several different weight matrices to make sure their
results are not merely an artifact of the matrix they are using, unless they have strong
theoretical motivations to not do so.

We will calculate the Moran’s I for a variable and test whether it is significant with 999
permutes using GeoDa. The null hypothesis H,. is no spatial autocorrelation (random
pattern). One alternative hypothesis H,; is positive spatial autocorrelation and the other

one H,, is negative spatial autocorrelation.

To do so, the values of the variable will be randomly shuffled (permuted) 999 times
and calculate Moran’s I for each permutation to see the value distribution of no spatial
autocorrelation. Then, the place original Moran’s I (for the observed variable) stands will
be compared to the Moran’s I values for the random permutations. If the Pseudo P-value
(Chance of getting a value as large as the observed value using samples from this
distribution) is less than 0.05, the original Moran’s I is statistically significantly different
from 0, which also means we can reject the H, of no spatial auto correlation.

Before the Moran’s 1 is calculated for the whole region (global spatial autocorrelation),
we also need to consider spatial autocorrelation in smaller area. Local spatial
autocorrelation is the presence of systematic spatial variation in a variable only focusing
on the relationships between each observation and its surroundings. In other words, it’s
the relationship between the variable value in each location and the values in its neighbors.

A Review of OLS regression and Assumptions

OLS regression is a statistical method used to examine the relationship between a
variable of interest (y) and one or more explanatory variables (x). These two kinds of
variables can be related to each other in a deterministic way or non-deterministic way.
OLS regression with one predictor is called simple regression, and regression with two or
more predictors is called multiple regression.

For simple regression, there are several model assumptions: Linear relationship
between y and x; Residuals are normally distributed; Residuals are random; Residuals
are homoscedastic; Independence of observations and residuals; y is continuous and
preferably normal.

For multiple regression, there are same assumptions as for simple regression and one

more: the predictors (x) should not be very strongly correlated with each other.

Please refer to Using OLS Regression to Predict Median House Values in Philadelphia
for more information about OLS.



When there is a spatial component in the data, the assumption of random errors is
usually violated.

We can test this assumption by examining the spatial autocorrelation of the residuals
using Moran’s I.

Another way to test spatial autocorrelation of OLS residuals is to regress them on
nearby residuals (residuals at neighboring block groups as defined by the Queen matrix).
rho (p) is the parameter used to judge the autocorrelation. It is calculated as the coefficient
of nearby residuals in the regression of OLS residuals and their nearby residuals, also
known as lambda (L) in GeoDa.

In this research, OLS regression will be run in GeoDa, where there is also a way of
testing other regression.

First, we need to check the assumption of homoscedasticity. To do so, we will test the
heteroscedasticity for OLS residuals in GeoDa using the White Test. The null hypothesis
H, here is that there is homoscedasticity (no heteroscedasticity). The alternative
hypothesis H, is that there is heteroscedasticity. If the p-value is less than 0.05, then we
can reject the null hypothesis for the alternate hypothesis of heteroscedasticity.

We also need to check the assumption of normality of errors. We will use Jarque-Bera
test in GeoDa to test it. The null hypothesis H, here is that the residuals are from a normal
distribution. The alternative hypothesis H, is that the residuals are not from a normal
distribution (non-normality). If p<0.05, reject the Null Hypothesis of normality for the
alternative hypothesis of non-normality.

Spatial Lag and Spatial Error Regression

In this report, we will be using GeoDa for running spatial lag and spatial error

regressions.

Spatial lag regression model assumes that the value of the dependent variable at one
location is associated with the values of that variable in nearby locations (defined by
Queen weights matrix in this report), which means the model includes the spatial lag of
the dependent variable as a predictor.

The spatial lag model is run as following equation in this research:

LNMEDHVAL = pWy + By + ByPCTVACANT + B,PCTSINGLES
+ BsPCTBACHMOR + B,LNBELPOV + ¢

Here, p is the coefficient of the spatial lag variable Wy; [, is the intercept; [5; is
the coefficient of the variable PCTVACANT ; f3, is the coefficient of the variable
PCTSINGLES ; [z is the coefficient of the variable PCTBACHMOR ; [, is the
coefficient of the variable LNBELPOV; ¢ is the residual.

Spatial error regression model assumes that the residual at one location is associated
with residuals at nearby locations. There are two steps: run OLS regression and regress
residuals on the nearest neighbor residuals.
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The spatial error model is run as following equation in this research:

LNMEDHVAL = B,PCTVACANT + B,PCTSINGLES + BsPCTBACHMOR
+ B,LNBELPOV + AW, +u

Here, [, is the intercept; B; is the coefficient of the variable PCTVACANT; [, is
the coefficient of the variable PCTSINGLES; [; is the coefficient of the variable
PCTBACHMOR; B, is the coefficient of the variable LNBELPOV; A is the coefficient
of the spatially lagged residuals W;; u is the random noise.

Most assumptions that are needed for OLS are still needed for both spatial lag and
spatial error regression models: each predictor is linearly related with the dependent
variable; The residuals are normal; There should not be multicollinearity. Only spatial
independence of observations is not needed.

The goal of spatial lag and spatial error regression is to reduce the influence of spatial
components on the model and thus improve the predictive power of the model. We hope
that after using these methods, the regression residuals will not show spatial

autocorrelation anymore.

We will compare the results of spatial lag regression with OLS and the results of spatial
error regression with OLS, then we will decide whether the spatial models perform better
than OLS based several criteria including Akaike Information Criterion (AIC)/Schwarz
Criterion (SC), Log Likelihood, and Likelihood Ratio Test.

The AIC and SC are measures of the goodness of fit of the model. They are relative
measures of the information lost, which describes the tradeoff between precision and
complexity of the model. The lower the AIC and SC, the better the fit of this model.

The Log Likelihood associated with the maximum likelihood method of fitting a
statistical model to the data and estimating model parameters. The higher the log
likelihood, the better the fit of this model. It should only be used for comparing nested
models, which means we can use it to compare OLS model with spatial lag model or with
spatial error model, but we can not use it to compare spatial lag model with spatial error

model.

The Likelihood Ratio Test compares the OLS model with the spatial model. The null
hypothesis H, here is spatial lag (or spatial error) model is not a better specification than
the OLS model. The alternative hypothesis H, 1is that spatial lag (or spatial error) model
is a better specification than the OLS model. If p value is less than 0.05, then we can reject
the null hypothesis and state that the spatial model is better than the OLS model.

Another way of comparing OLS results with spatial lag and spatial error results is by
looking at Moran’s I of regression residuals. With significances of residuals’ Moran's I for
all three models, the closer to 0 the Moran’s 1 is, the better the model is.

Geographically Weighted Regression

In this report, we will do geographically weighted regression analyses in ArcGIS. We
need to conduct spatial regression for different geographical observations so as to explore



the impact of prediction variables on the results of the dependent variable for different
spatial locations.

Compared with spatial lag regression and spatial error regression, the major difference
of geographical weighted regression is the non-stationarity of geographical spatial
relations. Spatial stationarity is the assumption that in the model, all correlations are
invariant in the global space, and the relationship between the predictors and dependent
variable at any specified location is the same. But in practice it is not always correct.

Local regression is very useful in practice, because in many cases, it is not a single,
global regression. The correlation between variables is closely related to geographical
location and environmental factors. We need to conduct separate local regression for
different locations, such as spots, area, tract, etc. which are with clear geographic

information.

Simpson's Paradox explains this difference and visualizes it. Plots below are two scatter
plots showing the relationship between variables and contains the fitting results after
regression. However, the left uses global regression, and the right is local regression. As
you can see, the scatter on the left show different clusters depending on the median home
price, but the regression result shows that burglary and median home price are negatively
correlated. In the figure on the right, the distribution of scatter points is the same as that
on the left, but these data are decomposed and different regressions are carried out
according to the regions, we will find that there are completely different correlation
relationships between variables in different regions.

Figurel

Formula below shows the equation for GWR. In the formula, i represents an observed
value, i = 1...n, this formula shows the dependent variable y and multiple predictive
variables X, (k = 1...m), and the formula is based on the geographical location of the
observed value i, and the relationship is specific to that location.
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The operation of local regression requires multiple observations and locations. If there
is only one observation value in the model, local regression cannot be run. The GWR data
set contains many observations, each of which will participate in the regression. However,
each observation value plays a different role in the regression according to different
geographical locations, which requires that different weights should be assigned to each
observation value, and the closer the observation value is to the location i, the higher the

weight will be.

The weight is calculated based on the distance between the observed value and the
location. There are two ways to calculate the weight: fixed bandwidth and adaptive
bandwidth. Fixed bandwidth means that the distance or area around an observation i
remains constant regardless of the number of observations. The equation can be expressed
as formula below. distance;; refers to the distance between regression point { and data

point j. h refers to the fixed bandwidth.

S(distanceij)z
w;j =1e h , if distance;; < h
0, otherwise

Unlike fixed bandwidth, although the number of observed values in the model does not
change, the area of the weight will be different. In the formula below, distance;; refers
to the distance between regression point i and data point j. The h for adaptive
bandwidth can be varied, and the value of this h has different values for different
observed values. For example, we stipulate that each observation value should contain 10
nearest values. Observation value 1 may need h= 5000 to obtain 10 nearest values, but
observation value 2 only needs h=2000 to meet the requirement.

2
distance;; 2 o . )
1- — , if jisoneof i's N nearest neighbors
Wi =

0, otherwise

The most important part of GWR is the calculation of weights, because different
weights have completely different effects on the results during the regression process. In
the calculation process, the weight calculation is also the choice of bandwidth. In GWR,
either fixed bandwidth or adaptive bandwidth can be used, so next we need to discuss
whether to use fixed or adaptive bandwidth to calculate the weight.

The fixed bandwidth is more suitable for the stable data distribution, and the quantity
distribution and aggregation degree of the observed values are very uniform. The adaptive
bandwidth is more suitable for considering the geographical spatial variation, that is, the



observed values are clustered or polygons are heterogeneously shaped or sized. Therefore,
for GWR, we need to conduct local regression for different spatial locations, and adopt
different bandwidths for different local regressions, which is also the characteristics of
adaptive bandwidth.

OLS needs to be run before running geographically weighted regression to ensure the
rationality of the model, because it is difficult to check the linearity of the data
relationships. This is the same as when we are using spatial lag regression and spatial error
regression, the OLS model should be run first. If the OLS result is reasonable, GWR can
continue. We know that many of our assumptions in OLS are still true in GWR, such as
residual normality, homoscedasticity, and no multicollinearity. However, GWR requires
an index called AIC, which is used to measure model performance and help compare
different regression models. The smaller AIC is, the better the model can fit the observed
data. However, when the amount of data is small, AIC is more likely to select models with
too many parameters, and small sample size needs to be corrected, which is called AICc.
Neither AIC nor AICc are absolute measures of goodness of fit, but as long as they apply
to the same dependent variable, they are useful for comparing models with different

explanatory variables.

We know that when we run a global regression model (such as OLS), if there is
multicollinearity between two or more variables, the results of the regression model are
not reliable. Multicollinearity means that a variable is redundant in the model, which has
almost the same effect as a collinear variable, which can have a negative effect on the
production of results. GWR will construct local regression equations for each factor in the
data set. When the values of the prediction variables are clustered in a substantial way,
you will very likely have multicollinearity problems. This actually shows that the
prediction variables play the same role in the position of each factor, and there is not
enough variability in the model. Similarly, if more than two variables in the model have
similar clustering patterns in the local region, the model will also encounter the
multicollinearity problem. For example, multicollinearity problems can occur if the values
of two variables in the data set are both very high or very low at a certain location. When
we run the GWR model in the algorithm, we get a property sheet with a number of
conditions by which we can determine whether the model is unstable due to
multicollinearity. In general, you cannot trust conditions that are large (greater than 30),
equal to null, or small.

In GWR, multicollinearity should be avoided as much as possible. Sometimes, some
problems need to be paid attention to in data processing. The inclusion of classified data
in the GWR model should be used with caution, as it may lead to unnecessary spatial
clustering of prediction variables, such clustering problems may lead to multicollinearity.
For example, assigning a value of 1 to an area outside the central city and a value of 0 to
a central city area will result in unnecessary data aggregation. In fact, GWR allows
coefficients of explanatory variables to vary, so it is not necessary to reassign features to
spatially categorized explanatory variables. If any clustering is present in the dummy
variable, then there may not be any variability in the predictor for position i, which is not
meaningful for the regression model.



It is worth noting that p-values are not included in GWR's output. In the global
regression model, p-value is usually used to test whether the estimated value of the
parameter is significantly different from the null hypothesis, and T-test is the process of
calculating p-values. However, for GWR, the calculation methods of local regression and
global regression test are quite different. Because for GWR, each regression point will
have a set of parameters, as well as a set of standard deviations, and there may be hundreds
of regression points during the regression process, it may be necessary to have thousands
of tests to determine whether the parameter is significant in the local regression.
According to type I error, if 0=0.05 is used as the significance level, it means that we
would predict that 5 out of 100 results would be significant, but in fact this is not correct.
If four variables prediction model has an estimated 2000 regression results, so will need
10000 significance tests, each regression results will contain an intercept and four
predictor variable inspection, for type I error, we would expect there are 500 test the
returned result is remarkable, but it only returns the results by accident, that they are not
actually significant in reality. Therefore, the significance test results in local regression
cannot be represented by p-values.

3. Results

a)

Spatial Autocorrelation

Below are the results of the global Moran's 1. The green vertical line represents the
Moran's I for the data is 0.79 with Queen Matrix. The red part represents the Moran's I for
all 999 permutations, the Pseudo P-value =0.001 < 0.05 which means there is a significant
spatial autocorrelation in the dependent variable, LNMEDHVAL.

permutations: 999
pseudo p-value: 0.001000

£ 0.7936 E[I]: -0.0006 mean: -0.0014 sd: 0.0138 z-value: 57.5348

Figure 2



Based on the global Moran' [ values, we understand that there is spatial autocorrelation
in LNMEDHVAL. For further study, we use LISA (Local Indices of Spatial
Autocorrelation) to measure which locations have significant spatial autocorrelation. The
following map filled by different shades of green is the LISA Significance Map, the darker
the color, the more significant spatial autocorrelation exists in that location, and the white
part indicates that there is no significant spatial autocorrelation at that place. The map
filled by red and blue is LISA Cluster Map, and the dark red part indicates that the
LNMEDHVAL around the census tract is high and the LNMEDHVAL at the location is
also high. The dark blue part indicates that the LNMEDHVAL around the census tract is
low while the LNMEDHVAL at that location is also low. The light red part indicates that
the LNMEDHVAL around the census tract is high while the LNMEDHVAL at this
location is low. The light blue part indicates that the LNMEDHVAL around this census
tract is low while the LNMEDHVAL at this location is high.

From the graph, we can see that the areas in Northwest and Northeast Philadelphia
appear to have a concentration of high housing prices to live in, and the areas in North
Philadelphia and West Philadelphia mantua areas appear to have a concentration of low

housing prices to congregate, which is consistent with the actual situation.

LISA Significance Map: Quser
Not Significant (826)
| p=0.05(309)
I »-001@30)
Wl o000 s

LISA Cluster Map: Queen Weig!
Not Significant (926)

Il Hign-High (365)

Wl Lov-Low (416)

B Low-High 8)

I High-Low (8)




b) Areview of OLS Regression and Assumptions: Results

==11,/04/22 174703

REGRESSIOM

SUMMARY OF CUTPUT. CRDIMARY LEAST SQUARES ESTIMATICN
Data set . Regression Data

Dependent Varnable : LMMEDHWVAL Mumber of Observations: 1720
Mean dependent var - 10.882 Mumber of Variables : &

5.0 dependent var :  0.62972 Degrees of Freedam ;1715

R-squared - 0.662300 F-statistic o B40.869
Adjusted R-squared : 0661513 Prob(F-statistic) 1]
Sum squared residual:  230.332 Log likelihood T -711.493
Sigma-square o 0134304 Akaike info criterion:  1432.99
S.E. of regression :  (0.366475 Schwarz criterion @ 1460.24

sigma-square ML 0.133914
5.E of regression ML 0.365942

Variable Coefficient Std.Error t-Statistic Probability
COMSTANT 11.1138  0.0465318 238843 0.00000
LMMNBELPOV -0.078%0535  0.0084567 -9.3503 0.00000
PCTBACHMOR  0.0209095 0.000543184 384944  (LO0000
PCTSINGLES 0.00297695 0.000703155 423371 0.00002
PCTVACANT -0.0191563 0.000977851 -19.5902  0.00000

REGRESSIOMN DIAGMNOSTICS

MULTICOLLINEARITY COMDITION MUMBER  12.990609
TEST OM MORMALITY OF ERRORS

TEST DF VALUE PROE
Jarque-Bera 2 T78.9646 0.00000

DIAGMOSTICS FOR HETEROSKEDASTICITY
RAMNDOM COEFFICIEMTS

TEST DF VALUE PROEBE
Breusch-Pagan test 4 162.9108 0.00000
Koenker-Bassett test 4 61.6992 0. 00000
SPECIFICATION ROBUST TEST

TEST DF VALUE PROB

White 14 111.3224 0.00000

DIAGMOSTICS FOR SPATIAL DEPENDEMNCE
FOR WEIGHT MATREIX : Queen Weights
(row-standardized weights)

TEST ML/ OF VALUE PROE
Maran's | (error) 0.3129 22.3664 0.00000
Lagrange Multiplier (lag) 1 930.1626 0.00000
Robust LM (lag) 1 4411061  0.00000
Lagrange Multiplier {error) 1 4905691 0.00000
Robust LM (error) 1 1.5126 0.21875

Lagrange Multiplier (SARMA) 2 931.6751 0.00000

Table 1



The OLS regression output shows that PCTSINGLES and PCTBACHMOR are highly
significant and positively associated with LNMEDHVAL, while PCTVACANT and
LNNBELPOV100 are highly significant and negatively associated with LNMEDHVAL
(p<0.05 for all four variables). More than 60% of variance in LNMDEHVAL has been
explain by the model (R? and Adjusted R? are 0.6623 and 0.6615). The p value with F-
statistic 841 is less than 0.05, so we can reject the Ho that all § coefficients are 0.

From the OLS results calculated by GeoDa, we can see three different
heteroskedasticity diagnostics, The Breusch-Pagan Test, The Koenker-Bassett Test, and
The White Test, From the GeoDa results we can see that the p-values of all three
diagnostics are less than 0.05, so there is a problem with heteroscedasticity.

Also, the Jarque-Bera test can be used to check the assumption of normality of errors
in GeoDa. From table 1, we can see that p value of the Jarque-Bera test is less than 0.05,
which indicating that the residuals are not from a normal distribution(non-normality).

270
]

160
1

050

OLS_RESIDU

-0.60

-1.70

[=)
@
=+ T T T T T
Y1 -0.60 -0.20 0.20 0.60 1
WT_RESIDU

#obs R*2 consta std-erra t-stata p-valuea slopeb stderrb t-statb p-valueb
1720 0229 -0.005 0.008 -0.605 0.545 0.733 0.032 22617 0

0 0 0 0 0 ) 0 0 0
1720 0229 -0.005 0.008 -0.605 0.545 0.733 0.032 228617 0

Chow test for sellunsel regression subsets: can't compute

Figure 4

To examine the spatial autocorrelation of the OLS Regression, the scatterplot of
OLS_RESIDU (OLS residuals) by WT_RESIDU (residuals at neighboring block groups
as defined by the Queen matrix) are presented above. We can see from the picture that the
value of p (referred to as Slope b in the results) is 0.733. That indicates a significant spatial

autocorrelation in the OLS Regression model.



Moran's : 0.313

lagged OLS_RESIDU

-8 -5 -2 1 4 7
OLS_RESIDU

Figure 5

To further examine spatial autocorrelation, the Moran’s I scatterplot and results from
the 999 permutations for OLS regression residuals are plotted as follows. From the graphs,
we can see a significant spatial autocorrelation in this OLS residuals because the p value
is less than 0.05. It is problematic and we will attempt to account for that in the following
practices in spatial model regressions.

Spatial Lag and Spatial Error Regression Results
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REGRESSION

SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : Regression Data

Spatial Weight  : Queen Weights

Dependent Variable : LNMEDHVAL Number of Observations: 1720

Mean dependent var :  10.882 Number of Variables : 6

S.D. dependent var :  0.62972 Degrees of Freedom :1714

Lag coeff. (Rho) : 0.651097

R-squared : 0.818564 Log likelihood . -255.74
Sqg. Correlation ;- Akaike info criterion:  523.48
Sigma-square : 0.071948 Schwarz criterion  :  556.18

S.E of regression : 0.268231

Variable Coefficient  Std.Error z-value Probability
W _LNMEDHVAL  0.651097 0.0180501 36.0716  0.00000
CONSTANT 3.89846 0.201114 19.3843  0.00000
LNNBELPOV -0.0340547 0.00629287 -5.41163  0.00000
PCTVACANT -0.0085294 0.000743667 -11.4694  0.00000
PCTSINGLES 0.00203342 0.00051577 3.9425 0.00008
PCTBACHMOR 0.00851381 0.000521935 16.312  0.00000

REGRESSION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST DF  VALUE PROB
Breusch-Pagan test 4 220.5884  0.00000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : Queen Weights

TEST DF  VALUE PROB
Likelihood Ratio Test 1 911.5067  0.00000
Table 2

The spatial lag regression output from GeoDa is presented above. From Table 2, the
coefficient of the spatial lag p =0.65, and it is significant (p < 0.05). This indicates that a
one unit increase of the W_LNMEDHVAL is associated with a 0.65 increase in
LNMEDHVAL at one location.

Further, we can see that all remaining predictors (PCTBACHMOR, PCTVACANT,
PCTSINGLES, AND LNNBELPOV100) are statistically significant (p<0.05 for all

variables).

The Breusch-Pagan test, as observed in the GeoDa results summary, indicates that there
is an issue with heteroscedastic residuals (p < 0.05). There is still a problem with

heteroscedasticity.

Based on the Table2 and Tablel, we can compare the Spatial Lag regression and OLS
regression models based on the Akaike Information Criterion (AIC) /Schwarz Criterion
(SC), the Log Likelihood, and the Likelihood Ratio Test.



For the Spatial Lag regression, AIC = 523.48, SC = 556.18. For the OLS regression,
AIC = 1432.99, SC = 1460.24. Because the lower the AIC and SC, the better the fits of
this model. The results indicates that the Spatial Lag model is a better fit than OLS.

For the Spatial Lag regression, Log Likelihood = -255.74. For the OLS regression, Log
Likelihood = -711.493. Because the higher the log likelihood, the better the fit of this
model. The results indicates that the Spatial Lag model is a better fit than OLS.

We can also use the Likelihood Ratio Test to compare the OLS model and the Spatial
Lag model. The p value of the test is less than 0.05, we reject the null hypothesis and state
that the Spatial Lag model is doing a better job than the OLS model.

As is showed in the scatterplot of Spatial Lag regression residuals below, the Moran’s
I of the Spatial Lag regression residuals is -0.082, which is closer to 0 than the Moran’s |
= 0.313 of the OLS regression residuals. There seem to be less spatial autocorrelation in
these residuals than in OLS residuals.

Moran's | -0.082

lagged LAG_RESIDU

T T T T
-8 -5 -2 1 4
LAG_RESIDU

Figure 6

Overall, the Spatial Lag Model performs much better at accounting for the spatial
processes that exist within the data based on all of these criteria.
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REGRESSION

SUMMARY OF QUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : Regression Data

Spatial Weight  : Queen Weights

Dependent Variable : LNMEDHVAL Number of Observations: 1720

Mean dependent var : 10.882000 Number of Variables : 5

S.D. dependentvar : 0.629720 Degrees of Freedom :1715

Lag coeff. (Lambda) : 0.814918

R-squared : 0.806957 R-squared (BUSE) -

Sg. Correlation  : - Log likelihood :-372.690368
Sigma-square 1 0.0765508 Akaike info criterion:  755.381
S.E of regression : 0.276678 Schwarz criterion : 782.631

Variable Coefficient  Std.Error z-value Probability
CONSTANT 10.9064  0.0534678 203.981  0.00000
LNNBELPOV  -0.0345341  0.00708933 -4.87127  0.00000

PCTBACHMOR 0.00981295 0.000728964 13.4615  0.00000

PCTVACANT -0.00578308 0.000886701 -6.52201  0.00000

PCTSINGLES 0.00267792 0.000620832 4.31343  0.00002
LAMBDA  0.814918 0.016373 49.7719  0.00000

REGRESSION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST DF  VALUE PROB
Breusch-Pagan test 4 210.9923  0.00000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : Queen Weights

TEST DF VALUE PROB
Likelihood Ratio Test 1 677.6059  0.00000
Table 3

The Spatial Error Regression output from GeoDa is present as follows. From Table 3,
the coefficient of the spatial parameter A is 0.81, and it is significantly important (p < 0.05).
This indicates that the LNMEDHVAL is highly correlated with some unexplained

variation with a spatial component.

After introducing the spatial parameter A, we can see that the remaining terms
(LNNBELPOV, PCTBACHMOR, PCTSINGLES, and PCTVACANT) all are still
significant (p<0.05 for all variables).

The Breusch-Pagan test, as observed in the GeoDa results summary, indicates that there
is an issue with heteroscedastic residuals (p < 0.05). There is still a problem with

heteroscedasticity.

Based on the Table3 and Tablel, we can compare the Spatial Error regression and OLS
regression models based on the Akaike Information Criterion (AIC) /Schwarz Criterion
(SC), the Log Likelihood, and the Likelihood Ratio Test.

For the Spatial Error regression, AIC =755.381, SC=782.631. For the OLS regression,



AIC = 1432.99, SC = 1460.24. Because the lower the AIC and SC, the better the fits of
this model. The results indicates that the Spatial Error model is a better fit than OLS model.

For the Spatial Error regression, Log Likelihood = -373.690. For the OLS regression,
Log Likelihood = -711.493. Because the higher the log likelihood, the better the fit of this
model. The results indicates that the Spatial Error model is a better fit than OLS model.

We can also use the Likelihood Ratio Test to compare the OLS model and the Spatial
Error model. The p value of the test is less than 0.05, we reject the null hypothesis and
state that the Spatial Lag model is doing a better job than the OLS model.

As is showed in the scatterplot of Spatial Error regression residuals below, the Moran’s
I of the Spatial Lag regression residuals is 0.095, which is closer to 0 than the Moran’s |
= 0.313 of the OLS regression residuals. There seem to be less spatial autocorrelation in
these residuals than in OLS residuals.

Moran's | -0.085

lagged ERR_RESIDU

-8 5 -3 0 3 6 9
ERR_RESIDU

Figure 7

Overall, based on the Akaike Information Criterion/Schwarz Criterion, the Log
Likelihood, the Likelihood Ratio Test, and the Moran’s I scatterplots, we can confidently
say the spatial error regression model is doing better than the OLS regression model.

From the regression results that are listed above, we can see that the value of the Akaike
Information Criterion (AIC) for Spatial Lag Regression model is 523.48, and the value
for Spatial Error Regression model is 755.381. That says, the Spatial Lag Regression
model is doing better than the Special Error Regression model. When it comes to the
Schwarz criterion (SC), the value for Spatial Lag Regression model is 556.18, and the



value for Spatial Error Regression model is 782.631, also indicating the Spatial Lag
Regression model is better.

Geographically Weighted Regression Results

We performed GWR in R, and the following is my presentation and explanation of the
results.

call:

gwr (formula = LNMEDHVAL ~ PCTVACANT + LNNBELPOV + PCTBACHMOR +
PCTSINGLES, data = shp, gweight = gwr.Gauss, adapt = bw,
hatmatrix = TRUE, se.fit = TRUE)

Kernel function: gwr.Gauss

Adaptive quantile: 0.008130619 (about 13 of 1720 data points)

summary of GWR coefficient estimates at data points:

Min. 1st qQu. Median 3rd Qu. Max. Global
X.Intercept. 9.6727618 10.7143173 10.9542384 11.1742009 12.0831381 11.1138
PCTVACANT -0.0317407 -0.0142383 -0.0089599 -0.0035770 0.0167916 -0.0192

LNNBELPOV -0.2365244 -0.0733572 -0.0401186 -0.0126657 0.0948768 -0.0789
PCTBACHMOR 0.0010974 0.0101380 0.0149279 0.0202187 0.0347258 0.0209
PCTSINGLES  -0.0249706 -0.0075550 -0.0016626 0.0042280 0.0143340 0.0030
Number of data points: 1720

Effective number of parameters (residual: 2tracesS - traces's): 360.5225
Effective degrees of freedom (residual: 2traces - traceS's): 1359.477

sigma (residual: 2traces - traces's): 0.2762201

Effective number of parameters (model: traces): 257.9061

Effective degrees of freedom (model: traces): 1462.094

Sigma (model: traces): 0.2663506

Ssigma (ML): 0.245571

AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 660.7924

AIC (GWR p. 96, eq. 4.22): 308.7123

Residual sum of squares: 103.7248

Quasi-global R2: 0.8479244

Table 4

We also used arcGISpro to conduct GWR operation. The following figure is the result
of the supplementary table:

Analysis Details
Funber of Featurss 1720
Dependent ¥ariable LNMEDHVAL
FCTEACHMOR
PCTVACANT
Explanatory Variahles
FCTEINGLES
LHNNEELFOWV
Number of Neighbors 75
Model Diagnostics
RZ 0. 8586
#djR2 0. 8210
AICc 9B2. 1524
Sigma—Squared 0.0710
Sigma—Scuared MLE 0. 0561
Effective Degrees of Freedon 1358, 5246
adjusted Critical Value of Pseudo-t Statistics 3. 3226
Succaadad at S0224511 8205 12:50:51 (Flapsad Time: 12 78 saconds)



It can be found that the results of R are slightly different from those of arcGISpro,
because the gold search method of arcGISpro is different from the AIC optimization
algorithm in arcMap and R. However, other indicators, such as the values of R-squared,
are basically consistent, indicating that the results of arcGISpro still have a certain
reference.

Firstly, regression results of adaptive bandwidth are shown. In Table 4, comparing with
the OLS regression, we can find the difference between the residuals and squares of GWR
and OLS. The R-squared of GWR (overall) is 0.848, while the R-squared of OLS is 0.662.
This indicates that the geographically weighted regression method is more suitable for the
prediction of this data set, because the R-squared of GWR is larger, which can better
explain the variance of the dependent variable.

Akaike Information Criteria (AIC) is used to compare GWR and OLS, spatial lag
regression and spatial error regression. The Akaike Information Criteria for GWR is 308,
and the Akaike Information Criteria for spatial lag regression is 523. The Akaike
Information Criteria for spatial error regression is 755. We know that the smaller Akaike
Information Criteria are, the better the fit of regression is. Therefore, in comparison, GWR
has the smallest AIC, indicating that GWR is more suitable for models with higher
complexity and can better fit the observed data.

The following gallery shows Moran's I scatterplot for GWR, as well as OLS, spatial
lag regression, and spatial error regression. It can be seen that GWR's Moran's I scatterplot
and OLS's Moran's I scatterplot indicate that in addition to the positive correlation of the
data, the autocorrelation of the former is slightly lower than that of the latter, but compared
with spatial lag regression and spatial error regression, GWR's Moran's 1 scatterplot
showed stronger autocorrelation, and both spatial lag regression and spatial error

regression showed negative correlation.
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Figure 8

You can call "SDF" in the geographically weighted regression to view the attribute
table of the local regression results, as shown in the figure below. I also present the
attribute table of the arcGISpro result, which contains the same variable index. The R-
square values of the observation results are 0.1337~0.8863, all of which are positive,
indicating that the output results are credible, which is different from the conclusion tried
in ArcGIS pro. According to the attribute table, the minimum value of local R-square is
0.1337. In fact, the R-square of many observed values in the data set is actually very low,
which can basically be regarded as 0. According to the intercept, we can find that the
coefficients of PCTVACANT, LNNBELPOV and PCTSINGLES are negative, indicating
that the relationship between these three prediction variables and the dependent variables
is negatively correlated, while the coefficient of PCTBACHMOR s positive, indicating



that it is positively correlated with the dependent variables. This table means that when
the PCTVACANT is added by one unit, the dependent variable will decrease by around
0.0092 units, and when LNNBELPOV is added by one unit, the dependent variable will
decrease by 0.045 units, when PCTBACHMOR is added by one unit, the dependent
variable will increase by 0.015 units, when PCTSINGLES is added by one unit, the
dependent variable will decrease by 0.002 units. We can also see that the precision error
of the coefficient, the lower the standard error of 0 relative to the coefficient, the more
reliable the coefficient will be. When the standard error is equal to or greater than half of

the coefficient, it is very unreliable and most likely the result of chance.

Object of class SpatialPolygonsDataFrame
Coordinates:

min max
® 2660604.8 2750171.3
y 207610.6 304838.8
Is projected: TRUE
projastring :
[+proj=lcc +lat_0=39.3333333333333 +lon_0=-77.75 +lat_1=40. 9666666666667 +lat_2=39.9333333333333
+x_0=600000 +y_0=0 ~datum=NADS3 +units=us-ft +no_defs]
Data attributes:

sum.w X.Intercept. ANT LNNBELPOV PCTBACHMOR

Min. :16.03 Min. : 9.67 :-0.031741 Min. :-0.23652 Min. :0. 001097
ist Qu.:24.47 1st Qu.:10.714 -0.014238 . :-0.07336 1st Qu.:0.010138
Median :26.64 Median :10.954 -0.008960 -0.04012 Median :0.014928
Mean 127.48 Mean :10.937 -0.009192 -0.04485 Mean :0.015267
3rd Qu. :29.45 3rd Qu.:11.174 . 1-0.003577 . 1-0.01267 3rd Qu.:0.020219
Max. :86.70 Max. :12.083 . 1 0.016792 Max. : 0.09488 Max. :0.034726

PCTSINGLES X.Intercept._se PCTVACANT _se LNNBELPOV_se PCTBACHVOR_se
Min. :-0.024971 Min. :0.09911 Min. :0.001821 Min. :0.01707 Min. :0. 0007667
1st Qu.:-0.007355 1st Qu.:0.19114 1lst Qu.:0.004201 1st Qu.:0.03521 1st Qu.:0.0025261
Median :-0.001663 Median :0.23474 Median :0.005458 Median :0.04198 Median :0.0048373
Mean :-0.002074 :0.25013 Mean :0.006536 Mean :0.04413 Mean :0.0049127
3rd Qu.: 0.004228 0.29127 3rd Qu.:0.007381 3rd Qu.:0.05035 3rd Qu.:0.0066118
Max. : 0.014334 0.54791 Max. :0.030192 Max. :0.09856 Max. :0.0151900
PCTSINGLES se pred pred.se JocalR2 X.Intercept._se_EDF
Min. :0.001177 .50370 Min. : 9.578 Min. :0.02931 Min. 1337 Min. :0.1028

1st Qu. :0.003560
Median :0.005214
Mean :0.005113
3rd Qu.:0.006596
Max. :0.010560 Max. .67766 Max. 113,307 ax. 10,23 :0.8863 Max. :
PCTVACANT _se_EDF LNNBELPOV_se_EDF PCTBACHVOR_se_EDF PCTSINGLES _se_EDF pred.se.l

H Min. d H d :0.03040

1

0.09867 1st Qu.:10.476 1st Qu.:0.05601 1st Qu.
0.01654 Median :10.831 Median :0.06773 Median
0.01099 Mean 110,871 Mean :0.07462 Mean
0.12800 3rd Qu.:11.232 3rd Qu.:0.08449 3rd Qu.:
1 M Max. H

5231 1st Qu. :0.1982
6342 Median :0.2434
Mean :0.2594
0.
0.

7312 3rd Qu.:0.3021
L5682

355555
o
[
5
o

Min. :0.00188% .01770 Min. :0.0007351 Min. :0.001221 Min. 10
1st Qu.:0.004357 .03651 1lst Qu.:0.0026197 1st Qu.:0.003692 1lst Qu.:0.03608
Median :0.005661 .04354  Median :0.0050166 Median :0.005407 Median :0.07024
Mean i0.006778 .04576  Mean :0.0050947  Mean 10.005307  Mean i0.07739
3rd Qu.:0.007654 «05221 3rd Qu.:0.0068568 3rd Qu.:0.006841 3rd Qu.:0.08762
Max. :0.031311 Max. :0.10222 Max. :0.0157529 Max. :0.010951 Max. :0.24063
OBJECTID * Shape * SOURCEID LNMEDHVAL PCTBACHMOR PCTVACANT PCTSINGLES LNNBELPOV Shape Length Shape Area Intercept
11 Palygon 0 12.32386 64.4737 13.2075 11.3208 0 3878.847269 775934527392 11.636823
2 2 Palygon 1 12111218 78.7805 0 0 3258097 3572646391 585168364303 11.695268
33 Palygon 2 12.32386 45 0 42,8571 270805 8453159794 3079983.28711 11.529598
4 4 Palygon 3 11640448 64.3564 115 0 426268 4713.098812 1342424436351 11.616336
55 Palygon 4 11745631 13.069 9.7387 0 6161207 = 5492.142465 1650748748841 11.013414
6 6 Palygon 5 10915107 32.6087 0 0 4736198 4174339845 785038.985198 10.735604
T Palygon 6 12177678 63.5319 12.9228 3.3825 4941642 7159446342 2499623.533032 1079146
8 8 Palygon 7 10687412 43.7323 9.2357 0 5877736 5600.860265 1897322.089297 10.512713

std. Error (INTRCPT) Pseudo-T (INTRCPT) Significance (INTRCPT) Coefficient (PCTEACHMOR) Std. Error (PCTEACHMOR) Pseudo-T (PCTEACHMOR)

0.187945 61916092 1 0.011921 0.001943 6.134596
0.199066 58.75083 1 0.010759 0.002115 5.087269
0.181419 63.552476 1 0.010505 0.001922 5.46468
0.183618 63.263658 1 0.011285 0.001916 5.891005
0.192155 57.315173 1 0.010128 0.001905 5317263
0.209275 51.299019 1 0.010251 0.001903 5387958
0.283386 38.080444 1 0.023946 0.002004 11949364

031112 33.789857 1 0.026081 0.002325 11.217454

Significance (LNNBELPOV) Predicted (L(NMEDHVAL) Residual 5td Residual Influence Cook'sD Condition Number Local R-Squared Number of Neighbors

0 12.088301 | 0.235559 1.010535 0.234435 0.001139 234.118435 0595253 75
0 12358689 -0.247471 -1.003148 0.142627  0.00061 336.889278 0443739 75
0 11.806732  0.517128 3283907 0.650647 0.073148 244279121 0459148 75
0 12.008136 -0.367688 -144325 008562 0.00071 223674122 0555391 75
a 11497136 0.248495 1.054809 0.217829 0.001128 253.02858 0430688 75
0 11.582481 -0.667375 -2.70959 0.145362 0.004548 277.933459 0428757 75
0 12045048 0.13263 0531793 0.123709 0.000145 793.807247 0.59795 75
0 11345736 -0.658324  -2.689024 0.155616 0.004853 1045.754978 0589223 75

Table 5



Below is the map distribution of local R-squared in the GWR results. It can be seen
that the R-squared differentiation of Philadelphia is very different, with some regions
showing very high R-squared, indicating that there is a significant relationship between
each predictor and dependent variable. For example, the GWR model fits poorly in the
central city and north Philadelphia with low local R-squared values.

localR2
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Figure 9

Discussion

After the regression of four models, we get different results and indicators. By comparing
the four models, we can say that GWR is the most suitable regression model for this data set.

First of all, GWR is more suitable for data with complex geographic distribution than OLS,
which cannot take into account the potential spatial instability. Moreover, by comparing the
results of R-squared, GWR is higher (0.848>0.662), indicating that GWR produces better
fitting. GWR with different specifications still produces lower AIC than OLS. However, in fact,
we should not compare GWR AIC with OLS AIC because there is no spatial autocorrelation in
GWR residuals, but there is spatial autocorrelation in OLS. Compared with spatial lag
regression and spatial error regression, GWR is more suitable. By comparing the AIC value, it
can be found that the AIC value of GWR is the smallest.

There are still some limitations for all these models. Firstly, the results of Breush-Pagan Test
for all the models are statistically significant with a p value < 0.05, which means all the models
have a problem with heteroscedasticity. Secondly, although the GWR model performed best,
there is still a problem with spatial autocorrelation compared with Spatial Lag regression model
and Spatial Error model.



