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Using Spatial Lag, Spatial Error and Geographically Weighted Regression to 
Predict Median House Values in Philadelphia Block Groups 

Yuhao Jia, Zhonghua Yang, Zile Wu 

1. Introduction 

As an important part of the social economy, housing prices reflect the development of society. 
Therefore, forecasts of housing prices can help people better judge the economy.  

In the previous report, we predicted median values for all owner-occupied housing units 
using OLS regression models based on the proportion of residents in the neighborhood group 
with at least a bachelor's degree; the proportion of vacant housing units; the proportion of 
detached single-family housing units and the number of households with incomes below the 
100% poverty level as predictors. 

However, the OLS analysis is often inappropriate when dealing with dataset that have a 
spatial component. In this report, we will use spatial lag, spatial error and geographically 
weighted regression to see whether these methods perform better than OLS. 

2. Methods 

a) A Description of the Concept of Spatial Autocorrelation 

Waldo Tobler proposed the first law of Geography: “Everything is related to everything 
else, but near things are more related than distant things.” 

Spatial autocorrelation describes the presence of systematic spatial variation in a 
variable, and Moran’s I is the most widely used method of testing for spatial 
autocorrelation. The value of Moran’s I is calculated as below: 
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In this formula, 𝑋𝑋� is the mean of the variable 𝑋𝑋. 𝑋𝑋𝑖𝑖 is the variable value at a particular 
location 𝑖𝑖 . 𝑋𝑋𝑖𝑖  is the variable value at another location 𝑗𝑗 .  𝑤𝑤𝑖𝑖𝑖𝑖  is a weight indexing 
location of 𝑖𝑖 relative to 𝑗𝑗. 𝑛𝑛 is the number of observations (points or areal units). 

The larger positive this value is (close to 1), the stronger positive autocorrelation it 
indicates. The larger negative this value is (close to -1), the stronger negative 
autocorrelation it indicates. If this value is around 0, it indicates that there is no spatial 



autocorrelation (random pattern). Moran’s I is most of times but not always between -1 
and 1. 

Queen neighbors of a polygon are those intersects it either at a point (common vertex) 
or a segment (common edge). In this report, Queen Neighbor Matrix will be used as the 
weight matrix to calculate the spatial autocorrelation and run the spatial regressions. 

As different spatial weight matrices have their own limitations and fit for different 
situation, statisticians usually try several different weight matrices to make sure their 
results are not merely an artifact of the matrix they are using, unless they have strong 
theoretical motivations to not do so. 

We will calculate the Moran’s I for a variable and test whether it is significant with 999 
permutes using GeoDa. The null hypothesis 𝐻𝐻0. is no spatial autocorrelation (random 
pattern). One alternative hypothesis 𝐻𝐻𝑎𝑎1 is positive spatial autocorrelation and the other 
one 𝐻𝐻𝑎𝑎2 is negative spatial autocorrelation.  

To do so, the values of the variable will be randomly shuffled (permuted) 999 times 
and calculate Moran’s I for each permutation to see the value distribution of no spatial 
autocorrelation. Then, the place original Moran’s I (for the observed variable) stands will 
be compared to the Moran’s I values for the random permutations. If the Pseudo P-value 
(Chance of getting a value as large as the observed value using samples from this 
distribution) is less than 0.05, the original Moran’s I is statistically significantly different 
from 0, which also means we can reject the 𝐻𝐻0 of no spatial auto correlation. 

Before the Moran’s I is calculated for the whole region (global spatial autocorrelation), 
we also need to consider spatial autocorrelation in smaller area. Local spatial 
autocorrelation is the presence of systematic spatial variation in a variable only focusing 
on the relationships between each observation and its surroundings. In other words, it’s 
the relationship between the variable value in each location and the values in its neighbors. 

b) A Review of OLS regression and Assumptions 

OLS regression is a statistical method used to examine the relationship between a 
variable of interest (𝑦𝑦) and one or more explanatory variables (𝑥𝑥).  These two kinds of 
variables can be related to each other in a deterministic way or non-deterministic way. 
OLS regression with one predictor is called simple regression, and regression with two or 
more predictors is called multiple regression.  

For simple regression, there are several model assumptions: Linear relationship 
between 𝑦𝑦 and 𝑥𝑥; Residuals are normally distributed; Residuals are random; Residuals 
are homoscedastic; Independence of observations and residuals; 𝑦𝑦  is continuous and 
preferably normal. 

For multiple regression, there are same assumptions as for simple regression and one 
more: the predictors (𝑥𝑥) should not be very strongly correlated with each other. 

Please refer to Using OLS Regression to Predict Median House Values in Philadelphia 
for more information about OLS. 



When there is a spatial component in the data, the assumption of random errors is 
usually violated. 

We can test this assumption by examining the spatial autocorrelation of the residuals 
using Moran’s I. 

Another way to test spatial autocorrelation of OLS residuals is to regress them on 
nearby residuals (residuals at neighboring block groups as defined by the Queen matrix). 
rho (ρ) is the parameter used to judge the autocorrelation. It is calculated as the coefficient 
of nearby residuals in the regression of OLS residuals and their nearby residuals, also 
known as lambda (λ) in GeoDa. 

In this research, OLS regression will be run in GeoDa, where there is also a way of 
testing other regression. 

First, we need to check the assumption of homoscedasticity. To do so, we will test the 
heteroscedasticity for OLS residuals in GeoDa using the White Test. The null hypothesis 
𝐻𝐻0  here is that there is homoscedasticity (no heteroscedasticity). The alternative 
hypothesis 𝐻𝐻𝑎𝑎 is that there is heteroscedasticity. If the p-value is less than 0.05, then we 
can reject the null hypothesis for the alternate hypothesis of heteroscedasticity. 

We also need to check the assumption of normality of errors. We will use Jarque-Bera 
test in GeoDa to test it. The null hypothesis 𝐻𝐻0 here is that the residuals are from a normal 
distribution. The alternative hypothesis 𝐻𝐻𝑎𝑎 is that the residuals are not from a normal 
distribution (non-normality). If p<0.05, reject the Null Hypothesis of normality for the 
alternative hypothesis of non-normality. 

c) Spatial Lag and Spatial Error Regression 

In this report, we will be using GeoDa for running spatial lag and spatial error 
regressions. 

Spatial lag regression model assumes that the value of the dependent variable at one 
location is associated with the values of that variable in nearby locations (defined by 
Queen weights matrix in this report), which means the model includes the spatial lag of 
the dependent variable as a predictor. 

The spatial lag model is run as following equation in this research: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿 =  𝜌𝜌𝜌𝜌𝑦𝑦 + 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃
+ 𝛽𝛽3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝐻𝐻𝐿𝐿𝑃𝑃𝑃𝑃 + 𝛽𝛽4𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿 +  𝜀𝜀 

Here, 𝜌𝜌 is the coefficient of the spatial lag variable 𝜌𝜌𝑦𝑦; 𝛽𝛽0 is the intercept; 𝛽𝛽1 is 
the coefficient of the variable 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃 ; 𝛽𝛽2  is the coefficient of the variable 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃 ; 𝛽𝛽3  is the coefficient of the variable 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝐻𝐻𝐿𝐿𝑃𝑃𝑃𝑃 ; 𝛽𝛽4  is the 
coefficient of the variable 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿; 𝜀𝜀 is the residual.  

Spatial error regression model assumes that the residual at one location is associated 
with residuals at nearby locations. There are two steps: run OLS regression and regress 
residuals on the nearest neighbor residuals. 



The spatial error model is run as following equation in this research: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿 =  𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝐻𝐻𝐿𝐿𝑃𝑃𝑃𝑃
+ 𝛽𝛽4𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿 +  𝜆𝜆𝜌𝜌𝜀𝜀 + 𝑢𝑢 

Here, 𝛽𝛽0 is the intercept; 𝛽𝛽1 is the coefficient of the variable 𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃; 𝛽𝛽2 is 
the coefficient of the variable 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃 ; 𝛽𝛽3  is the coefficient of the variable 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝐻𝐻𝐿𝐿𝑃𝑃𝑃𝑃; 𝛽𝛽4 is the coefficient of the variable 𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿; 𝜆𝜆 is the coefficient 
of the spatially lagged residuals 𝜌𝜌𝜀𝜀; 𝑢𝑢 is the random noise.  

Most assumptions that are needed for OLS are still needed for both spatial lag and 
spatial error regression models: each predictor is linearly related with the dependent 
variable; The residuals are normal; There should not be multicollinearity. Only spatial 
independence of observations is not needed. 

The goal of spatial lag and spatial error regression is to reduce the influence of spatial 
components on the model and thus improve the predictive power of the model. We hope 
that after using these methods, the regression residuals will not show spatial 
autocorrelation anymore. 

We will compare the results of spatial lag regression with OLS and the results of spatial 
error regression with OLS, then we will decide whether the spatial models perform better 
than OLS based several criteria including Akaike Information Criterion (AIC)/Schwarz 
Criterion (SC), Log Likelihood, and Likelihood Ratio Test. 

The AIC and SC are measures of the goodness of fit of the model. They are relative 
measures of the information lost, which describes the tradeoff between precision and 
complexity of the model. The lower the AIC and SC, the better the fit of this model. 

The Log Likelihood associated with the maximum likelihood method of fitting a 
statistical model to the data and estimating model parameters. The higher the log 
likelihood, the better the fit of this model. It should only be used for comparing nested 
models, which means we can use it to compare OLS model with spatial lag model or with 
spatial error model, but we can not use it to compare spatial lag model with spatial error 
model. 

The Likelihood Ratio Test compares the OLS model with the spatial model. The null 
hypothesis 𝐻𝐻0 here is spatial lag (or spatial error) model is not a better specification than 
the OLS model. The alternative hypothesis 𝐻𝐻𝑎𝑎 is that spatial lag (or spatial error) model 
is a better specification than the OLS model. If p value is less than 0.05, then we can reject 
the null hypothesis and state that the spatial model is better than the OLS model. 

Another way of comparing OLS results with spatial lag and spatial error results is by 
looking at Moran’s I of regression residuals. With significances of residuals’ Moran's I for 
all three models, the closer to 0 the Moran’s I is, the better the model is. 

d) Geographically Weighted Regression 

In this report, we will do geographically weighted regression analyses in ArcGIS. We 
need to conduct spatial regression for different geographical observations so as to explore 



the impact of prediction variables on the results of the dependent variable for different 
spatial locations. 

Compared with spatial lag regression and spatial error regression, the major difference 
of geographical weighted regression is the non-stationarity of geographical spatial 
relations. Spatial stationarity is the assumption that in the model, all correlations are 
invariant in the global space, and the relationship between the predictors and dependent 
variable at any specified location is the same. But in practice it is not always correct.  

Local regression is very useful in practice, because in many cases, it is not a single, 
global regression. The correlation between variables is closely related to geographical 
location and environmental factors. We need to conduct separate local regression for 
different locations, such as spots, area, tract, etc. which are with clear geographic 
information. 

Simpson's Paradox explains this difference and visualizes it. Plots below are two scatter 
plots showing the relationship between variables and contains the fitting results after 
regression. However, the left uses global regression, and the right is local regression. As 
you can see, the scatter on the left show different clusters depending on the median home 
price, but the regression result shows that burglary and median home price are negatively 
correlated. In the figure on the right, the distribution of scatter points is the same as that 
on the left, but these data are decomposed and different regressions are carried out 
according to the regions, we will find that there are completely different correlation 
relationships between variables in different regions. 

 

Figure1 

Formula below shows the equation for GWR. In the formula, 𝑖𝑖 represents an observed 
value, 𝑖𝑖 = 1 …𝑛𝑛, this formula shows the dependent variable y and multiple predictive 
variables 𝑥𝑥𝑘𝑘, (𝑘𝑘 = 1 …𝑚𝑚), and the formula is based on the geographical location of the 
observed value i, and the relationship is specific to that location. 



𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝑥𝑥𝑖𝑖1 + 𝛽𝛽𝑖𝑖2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖 = 𝛽𝛽𝑖𝑖0 + �𝛽𝛽𝑖𝑖𝑘𝑘
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𝑥𝑥𝑖𝑖𝑘𝑘 + 𝜀𝜀𝑖𝑖  

The operation of local regression requires multiple observations and locations. If there 
is only one observation value in the model, local regression cannot be run. The GWR data 
set contains many observations, each of which will participate in the regression. However, 
each observation value plays a different role in the regression according to different 
geographical locations, which requires that different weights should be assigned to each 
observation value, and the closer the observation value is to the location 𝑖𝑖，the higher the 
weight will be. 

The weight is calculated based on the distance between the observed value and the 
location. There are two ways to calculate the weight: fixed bandwidth and adaptive 
bandwidth. Fixed bandwidth means that the distance or area around an observation 𝑖𝑖 
remains constant regardless of the number of observations. The equation can be expressed 
as formula below. 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 refers to the distance between regression point 𝑖𝑖 and data 
point 𝑗𝑗. ℎ refers to the fixed bandwidth. 
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Unlike fixed bandwidth, although the number of observed values in the model does not 
change, the area of the weight will be different. In the formula below, 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 refers 
to the distance between regression point 𝑖𝑖  and data point 𝑗𝑗 . The ℎ  for adaptive 
bandwidth can be varied, and the value of this ℎ  has different values for different 
observed values. For example, we stipulate that each observation value should contain 10 
nearest values. Observation value 1 may need h= 5000 to obtain 10 nearest values, but 
observation value 2 only needs h=2000 to meet the requirement. 
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The most important part of GWR is the calculation of weights, because different 
weights have completely different effects on the results during the regression process. In 
the calculation process, the weight calculation is also the choice of bandwidth. In GWR, 
either fixed bandwidth or adaptive bandwidth can be used, so next we need to discuss 
whether to use fixed or adaptive bandwidth to calculate the weight. 

The fixed bandwidth is more suitable for the stable data distribution, and the quantity 
distribution and aggregation degree of the observed values are very uniform. The adaptive 
bandwidth is more suitable for considering the geographical spatial variation, that is, the 



observed values are clustered or polygons are heterogeneously shaped or sized. Therefore, 
for GWR, we need to conduct local regression for different spatial locations, and adopt 
different bandwidths for different local regressions, which is also the characteristics of 
adaptive bandwidth. 

OLS needs to be run before running geographically weighted regression to ensure the 
rationality of the model, because it is difficult to check the linearity of the data 
relationships. This is the same as when we are using spatial lag regression and spatial error 
regression, the OLS model should be run first. If the OLS result is reasonable, GWR can 
continue. We know that many of our assumptions in OLS are still true in GWR, such as 
residual normality, homoscedasticity, and no multicollinearity. However, GWR requires 
an index called AIC, which is used to measure model performance and help compare 
different regression models. The smaller AIC is, the better the model can fit the observed 
data. However, when the amount of data is small, AIC is more likely to select models with 
too many parameters, and small sample size needs to be corrected, which is called AICc. 
Neither AIC nor AICc are absolute measures of goodness of fit, but as long as they apply 
to the same dependent variable, they are useful for comparing models with different 
explanatory variables. 

We know that when we run a global regression model (such as OLS), if there is 
multicollinearity between two or more variables, the results of the regression model are 
not reliable. Multicollinearity means that a variable is redundant in the model, which has 
almost the same effect as a collinear variable, which can have a negative effect on the 
production of results. GWR will construct local regression equations for each factor in the 
data set. When the values of the prediction variables are clustered in a substantial way, 
you will very likely have multicollinearity problems. This actually shows that the 
prediction variables play the same role in the position of each factor, and there is not 
enough variability in the model. Similarly, if more than two variables in the model have 
similar clustering patterns in the local region, the model will also encounter the 
multicollinearity problem. For example, multicollinearity problems can occur if the values 
of two variables in the data set are both very high or very low at a certain location. When 
we run the GWR model in the algorithm, we get a property sheet with a number of 
conditions by which we can determine whether the model is unstable due to 
multicollinearity. In general, you cannot trust conditions that are large (greater than 30), 
equal to null, or small. 

In GWR, multicollinearity should be avoided as much as possible. Sometimes, some 
problems need to be paid attention to in data processing. The inclusion of classified data 
in the GWR model should be used with caution, as it may lead to unnecessary spatial 
clustering of prediction variables, such clustering problems may lead to multicollinearity. 
For example, assigning a value of 1 to an area outside the central city and a value of 0 to 
a central city area will result in unnecessary data aggregation. In fact, GWR allows 
coefficients of explanatory variables to vary, so it is not necessary to reassign features to 
spatially categorized explanatory variables. If any clustering is present in the dummy 
variable, then there may not be any variability in the predictor for position i, which is not 
meaningful for the regression model. 



It is worth noting that p-values are not included in GWR's output. In the global 
regression model, p-value is usually used to test whether the estimated value of the 
parameter is significantly different from the null hypothesis, and T-test is the process of 
calculating p-values. However, for GWR, the calculation methods of local regression and 
global regression test are quite different. Because for GWR, each regression point will 
have a set of parameters, as well as a set of standard deviations, and there may be hundreds 
of regression points during the regression process, it may be necessary to have thousands 
of tests to determine whether the parameter is significant in the local regression. 
According to type I error, if α=0.05 is used as the significance level, it means that we 
would predict that 5 out of 100 results would be significant, but in fact this is not correct. 
If four variables prediction model has an estimated 2000 regression results, so will need 
10000 significance tests, each regression results will contain an intercept and four 
predictor variable inspection, for type I error, we would expect there are 500 test the 
returned result is remarkable, but it only returns the results by accident, that they are not 
actually significant in reality. Therefore, the significance test results in local regression 
cannot be represented by p-values. 

3. Results 

a) Spatial Autocorrelation 

Below are the results of the global Moran's I. The green vertical line represents the 
Moran's I for the data is 0.79 with Queen Matrix. The red part represents the Moran's I for 
all 999 permutations, the Pseudo P-value = 0.001 < 0.05 which means there is a significant 
spatial autocorrelation in the dependent variable, LNMEDHVAL. 

 

Figure 2 



Based on the global Moran' I values, we understand that there is spatial autocorrelation 
in LNMEDHVAL. For further study, we use LISA (Local Indices of Spatial 
Autocorrelation) to measure which locations have significant spatial autocorrelation. The 
following map filled by different shades of green is the LISA Significance Map, the darker 
the color, the more significant spatial autocorrelation exists in that location, and the white 
part indicates that there is no significant spatial autocorrelation at that place. The map 
filled by red and blue is LISA Cluster Map, and the dark red part indicates that the 
LNMEDHVAL around the census tract is high and the LNMEDHVAL at the location is 
also high. The dark blue part indicates that the LNMEDHVAL around the census tract is 
low while the LNMEDHVAL at that location is also low. The light red part indicates that 
the LNMEDHVAL around the census tract is high while the LNMEDHVAL at this 
location is low. The light blue part indicates that the LNMEDHVAL around this census 
tract is low while the LNMEDHVAL at this location is high. 

From the graph, we can see that the areas in Northwest and Northeast Philadelphia 
appear to have a concentration of high housing prices to live in, and the areas in North 
Philadelphia and West Philadelphia mantua areas appear to have a concentration of low 
housing prices to congregate, which is consistent with the actual situation. 

 

 

Figure 3 

 



b) A review of OLS Regression and Assumptions: Results 

 

Table 1 



The OLS regression output shows that PCTSINGLES and PCTBACHMOR are highly 
significant and positively associated with LNMEDHVAL, while PCTVACANT and 
LNNBELPOV100 are highly significant and negatively associated with LNMEDHVAL 
(p<0.05 for all four variables). More than 60% of variance in LNMDEHVAL has been 
explain by the model (R2 and Adjusted R2 are 0.6623 and 0.6615). The p value with F-
statistic 841 is less than 0.05, so we can reject the H0 that all 𝛽𝛽 coefficients are 0.  

From the OLS results calculated by GeoDa, we can see three different 
heteroskedasticity diagnostics, The Breusch-Pagan Test, The Koenker-Bassett Test, and 
The White Test, From the GeoDa results we can see that the p-values of all three 
diagnostics are less than 0.05, so there is a problem with heteroscedasticity. 

Also, the Jarque-Bera test can be used to check the assumption of normality of errors 
in GeoDa. From table 1, we can see that p value of the Jarque-Bera test is less than 0.05, 
which indicating that the residuals are not from a normal distribution(non-normality). 

 

Figure 4 

To examine the spatial autocorrelation of the OLS Regression, the scatterplot of 
OLS_RESIDU (OLS residuals) by WT_RESIDU (residuals at neighboring block groups 
as defined by the Queen matrix) are presented above. We can see from the picture that the 
value of ρ (referred to as Slope b in the results) is 0.733. That indicates a significant spatial 
autocorrelation in the OLS Regression model. 



 

Figure 5 

To further examine spatial autocorrelation, the Moran’s I scatterplot and results from 
the 999 permutations for OLS regression residuals are plotted as follows. From the graphs, 
we can see a significant spatial autocorrelation in this OLS residuals because the p value 
is less than 0.05. It is problematic and we will attempt to account for that in the following 
practices in spatial model regressions. 

c) Spatial Lag and Spatial Error Regression Results 



 

Table 2 

The spatial lag regression output from GeoDa is presented above. From Table 2, the 
coefficient of the spatial lag 𝜌𝜌 =0.65, and it is significant (p < 0.05). This indicates that a 
one unit increase of the W_LNMEDHVAL is associated with a 0.65 increase in 
LNMEDHVAL at one location. 

Further, we can see that all remaining predictors (PCTBACHMOR, PCTVACANT, 
PCTSINGLES, AND LNNBELPOV100) are statistically significant (p<0.05 for all 
variables).  

The Breusch-Pagan test, as observed in the GeoDa results summary, indicates that there 
is an issue with heteroscedastic residuals (p < 0.05). There is still a problem with 
heteroscedasticity. 

Based on the Table2 and Table1, we can compare the Spatial Lag regression and OLS 
regression models based on the Akaike Information Criterion (AIC) /Schwarz Criterion 
(SC), the Log Likelihood, and the Likelihood Ratio Test. 



For the Spatial Lag regression, AIC = 523.48, SC = 556.18. For the OLS regression, 
AIC = 1432.99, SC = 1460.24. Because the lower the AIC and SC, the better the fits of 
this model. The results indicates that the Spatial Lag model is a better fit than OLS. 

For the Spatial Lag regression, Log Likelihood = -255.74. For the OLS regression, Log 
Likelihood = -711.493. Because the higher the log likelihood, the better the fit of this 
model. The results indicates that the Spatial Lag model is a better fit than OLS. 

We can also use the Likelihood Ratio Test to compare the OLS model and the Spatial 
Lag model. The p value of the test is less than 0.05, we reject the null hypothesis and state 
that the Spatial Lag model is doing a better job than the OLS model. 

As is showed in the scatterplot of Spatial Lag regression residuals below, the Moran’s 
I of the Spatial Lag regression residuals is -0.082, which is closer to 0 than the Moran’s I 
= 0.313 of the OLS regression residuals. There seem to be less spatial autocorrelation in 
these residuals than in OLS residuals.   

 

Figure 6 

Overall, the Spatial Lag Model performs much better at accounting for the spatial 
processes that exist within the data based on all of these criteria.  



 

Table 3 

The Spatial Error Regression output from GeoDa is present as follows. From Table 3, 
the coefficient of the spatial parameter λ is 0.81, and it is significantly important (p < 0.05). 
This indicates that the LNMEDHVAL is highly correlated with some unexplained 
variation with a spatial component. 

After introducing the spatial parameter λ, we can see that the remaining terms 
(LNNBELPOV, PCTBACHMOR, PCTSINGLES, and PCTVACANT) all are still 
significant (p<0.05 for all variables). 

The Breusch-Pagan test, as observed in the GeoDa results summary, indicates that there 
is an issue with heteroscedastic residuals (p < 0.05). There is still a problem with 
heteroscedasticity. 

Based on the Table3 and Table1, we can compare the Spatial Error regression and OLS 
regression models based on the Akaike Information Criterion (AIC) /Schwarz Criterion 
(SC), the Log Likelihood, and the Likelihood Ratio Test. 

For the Spatial Error regression, AIC = 755.381, SC = 782.631. For the OLS regression, 



AIC = 1432.99, SC = 1460.24. Because the lower the AIC and SC, the better the fits of 
this model. The results indicates that the Spatial Error model is a better fit than OLS model. 

For the Spatial Error regression, Log Likelihood = -373.690. For the OLS regression, 
Log Likelihood = -711.493. Because the higher the log likelihood, the better the fit of this 
model. The results indicates that the Spatial Error model is a better fit than OLS model. 

We can also use the Likelihood Ratio Test to compare the OLS model and the Spatial 
Error model. The p value of the test is less than 0.05, we reject the null hypothesis and 
state that the Spatial Lag model is doing a better job than the OLS model. 

As is showed in the scatterplot of Spatial Error regression residuals below, the Moran’s 
I of the Spatial Lag regression residuals is 0.095, which is closer to 0 than the Moran’s I 
= 0.313 of the OLS regression residuals. There seem to be less spatial autocorrelation in 
these residuals than in OLS residuals.  

 

Figure 7 

Overall, based on the Akaike Information Criterion/Schwarz Criterion, the Log 
Likelihood, the Likelihood Ratio Test, and the Moran’s I scatterplots, we can confidently 
say the spatial error regression model is doing better than the OLS regression model. 

From the regression results that are listed above, we can see that the value of the Akaike 
Information Criterion (AIC) for Spatial Lag Regression model is 523.48, and the value 
for Spatial Error Regression model is 755.381. That says, the Spatial Lag Regression 
model is doing better than the Special Error Regression model. When it comes to the 
Schwarz criterion (SC), the value for Spatial Lag Regression model is 556.18, and the 



value for Spatial Error Regression model is 782.631, also indicating the Spatial Lag 
Regression model is better. 

 

d) Geographically Weighted Regression Results 

We performed GWR in R, and the following is my presentation and explanation of the 
results.  

 

Table 4 

We also used arcGISpro to conduct GWR operation. The following figure is the result 
of the supplementary table: 

 



It can be found that the results of R are slightly different from those of arcGISpro, 
because the gold search method of arcGISpro is different from the AIC optimization 
algorithm in arcMap and R. However, other indicators, such as the values of R-squared, 
are basically consistent, indicating that the results of arcGISpro still have a certain 
reference. 

Firstly, regression results of adaptive bandwidth are shown. In Table 4, comparing with 
the OLS regression, we can find the difference between the residuals and squares of GWR 
and OLS. The R-squared of GWR (overall) is 0.848, while the R-squared of OLS is 0.662. 
This indicates that the geographically weighted regression method is more suitable for the 
prediction of this data set, because the R-squared of GWR is larger, which can better 
explain the variance of the dependent variable. 

Akaike Information Criteria (AIC) is used to compare GWR and OLS, spatial lag 
regression and spatial error regression. The Akaike Information Criteria for GWR is 308, 
and the Akaike Information Criteria for spatial lag regression is 523. The Akaike 
Information Criteria for spatial error regression is 755. We know that the smaller Akaike 
Information Criteria are, the better the fit of regression is. Therefore, in comparison, GWR 
has the smallest AIC, indicating that GWR is more suitable for models with higher 
complexity and can better fit the observed data. 

The following gallery shows Moran's I scatterplot for GWR, as well as OLS, spatial 
lag regression, and spatial error regression. It can be seen that GWR's Moran's I scatterplot 
and OLS's Moran's I scatterplot indicate that in addition to the positive correlation of the 
data, the autocorrelation of the former is slightly lower than that of the latter, but compared 
with spatial lag regression and spatial error regression, GWR's Moran's I scatterplot 
showed stronger autocorrelation, and both spatial lag regression and spatial error 
regression showed negative correlation. 

 



 

 

 

Figure 8 

You can call "SDF" in the geographically weighted regression to view the attribute 
table of the local regression results, as shown in the figure below. I also present the 
attribute table of the arcGISpro result, which contains the same variable index. The R-
square values of the observation results are 0.1337~0.8863, all of which are positive, 
indicating that the output results are credible, which is different from the conclusion tried 
in ArcGIS pro. According to the attribute table, the minimum value of local R-square is 
0.1337. In fact, the R-square of many observed values in the data set is actually very low, 
which can basically be regarded as 0. According to the intercept, we can find that the 
coefficients of PCTVACANT, LNNBELPOV and PCTSINGLES are negative, indicating 
that the relationship between these three prediction variables and the dependent variables 
is negatively correlated, while the coefficient of PCTBACHMOR is positive, indicating 



that it is positively correlated with the dependent variables. This table means that when 
the PCTVACANT is added by one unit, the dependent variable will decrease by around 
0.0092 units, and when LNNBELPOV is added by one unit, the dependent variable will 
decrease by 0.045 units, when PCTBACHMOR is added by one unit, the dependent 
variable will increase by 0.015 units, when PCTSINGLES is added by one unit, the 
dependent variable will decrease by 0.002 units. We can also see that the precision error 
of the coefficient, the lower the standard error of 0 relative to the coefficient, the more 
reliable the coefficient will be. When the standard error is equal to or greater than half of 
the coefficient, it is very unreliable and most likely the result of chance. 

 

 

 

 

Table 5 



Below is the map distribution of local R-squared in the GWR results. It can be seen 
that the R-squared differentiation of Philadelphia is very different, with some regions 
showing very high R-squared, indicating that there is a significant relationship between 
each predictor and dependent variable. For example, the GWR model fits poorly in the 
central city and north Philadelphia with low local R-squared values. 

 

Figure 9 

4. Discussion 

After the regression of four models, we get different results and indicators. By comparing 
the four models, we can say that GWR is the most suitable regression model for this data set.  

First of all, GWR is more suitable for data with complex geographic distribution than OLS, 
which cannot take into account the potential spatial instability. Moreover, by comparing the 
results of R-squared, GWR is higher (0.848>0.662), indicating that GWR produces better 
fitting. GWR with different specifications still produces lower AIC than OLS. However, in fact, 
we should not compare GWR AIC with OLS AIC because there is no spatial autocorrelation in 
GWR residuals, but there is spatial autocorrelation in OLS. Compared with spatial lag 
regression and spatial error regression, GWR is more suitable. By comparing the AIC value, it 
can be found that the AIC value of GWR is the smallest. 

There are still some limitations for all these models. Firstly, the results of Breush-Pagan Test 
for all the models are statistically significant with a p value < 0.05, which means all the models 
have a problem with heteroscedasticity. Secondly, although the GWR model performed best, 
there is still a problem with spatial autocorrelation compared with Spatial Lag regression model 
and Spatial Error model. 


